ParamsEstimation 源代码

""""""  #
"""
Copyright (c) 2020-2023, Dany Cajas
All rights reserved.
This work is licensed under BSD 3-Clause "New" or "Revised" License.
License available at https://github.com/dcajasn/Riskfolio-Lib/blob/master/LICENSE.txt
"""

import numpy as np
import pandas as pd
import statsmodels.api as sm
import sklearn.covariance as skcov
import arch.bootstrap as bs
from sklearn.preprocessing import StandardScaler
from sklearn.decomposition import PCA
from numpy.linalg import inv
from itertools import product
import riskfolio.src.AuxFunctions as af
import riskfolio.src.DBHT as db
import riskfolio.src.GerberStatistic as gs
import riskfolio.external.cppfunctions as cf


__all__ = [
    "mean_vector",
    "covar_matrix",
    "cokurt_matrix",
    "forward_regression",
    "backward_regression",
    "PCR",
    "loadings_matrix",
    "risk_factors",
    "black_litterman",
    "augmented_black_litterman",
    "black_litterman_bayesian",
    "bootstrapping",
]


[文档] def mean_vector(X, method="hist", d=0.94, target="b1"): r""" Calculate the expected returns vector using the selected method. Parameters ---------- X : DataFrame of shape (n_samples, n_features) Features matrix, where n_samples is the number of samples and n_features is the number of features. method : str, optional The method used to estimate the expected returns. The default value is 'hist'. Possible values are: - 'hist': use historical estimator. - 'ewma1': use ewma with adjust=True. For more information see `EWM <https://pandas.pydata.org/pandas-docs/stable/user_guide/window.html#exponentially-weighted-window>`__. - 'ewma2': use ewma with adjust=False. For more information see `EWM <https://pandas.pydata.org/pandas-docs/stable/user_guide/window.html#exponentially-weighted-window>`__. - 'JS': James-Stein estimator. For more information see :cite:`b-Meucci2005` and :cite:`b-Feng2016`. - 'BS': Bayes-Stein estimator. For more information see :cite:`b-Jorion1986`. - 'BOP': BOP estimator. For more information see :cite:`b-Bodnar2019`. d : scalar The smoothing factor of ewma methods. The default is 0.94. target : str, optional The target mean vector. The default value is 'b1'. Possible values are: - 'b1': grand mean. - 'b2': volatility weighted grand mean. - 'b3': mean square error of sample mean. Returns ------- mu : 1d-array The estimation of expected returns. Raises ------ ValueError When the value cannot be calculated. """ if not isinstance(X, pd.DataFrame): raise ValueError("X must be a DataFrame") assets = X.columns.tolist() if method == "hist": mu = np.array(X.mean(), ndmin=2) elif method == "ewma1": mu = np.array(X.ewm(alpha=1 - d).mean().iloc[-1, :], ndmin=2) elif method == "ewma2": mu = np.array(X.ewm(alpha=1 - d, adjust=False).mean().iloc[-1, :], ndmin=2) elif method == "ewma2": mu = np.array(X.ewm(alpha=1 - d, adjust=False).mean().iloc[-1, :], ndmin=2) elif method in ["JS", "BS", "BOP"]: T, n = X.shape ones = np.ones((n, 1)) mu = np.array(X.mean(), ndmin=2).reshape(-1, 1) Sigma = np.cov(X.T) Sigma_inv = np.linalg.inv(Sigma) eigvals = np.linalg.eigvals(Sigma) # Calculate target vector if target == "b1": b = ones.T @ mu / n * ones elif target == "b2": b = ones.T @ Sigma_inv @ mu / (ones.T @ Sigma_inv @ ones) * ones elif target == "b3": b = np.trace(Sigma) / T * ones # Calculate Estimators if method == "JS": alpha_1 = ( 1 / T * (n * np.mean(eigvals) - 2 * np.max(eigvals)) / ((mu - b).T @ (mu - b)) ) mu = (1 - alpha_1) * mu + alpha_1 * b elif method == "BS": alpha_1 = (n + 2) / ((n + 2) + T * (mu - b).T @ Sigma_inv @ (mu - b)) mu = (1 - alpha_1) * mu + alpha_1 * b elif method == "BOP": alpha_1 = (mu.T @ Sigma_inv @ mu - n / (T - n)) * b.T @ Sigma_inv @ b - ( mu.T @ Sigma_inv @ b ) ** 2 alpha_1 /= (mu.T @ Sigma_inv @ mu) * (b.T @ Sigma_inv @ b) - ( mu.T @ Sigma_inv @ b ) ** 2 beta_1 = (1 - alpha_1) * (mu.T @ Sigma_inv @ b) / (mu.T @ Sigma_inv @ mu) mu = alpha_1 * mu + beta_1 * b mu = mu.T mu = pd.DataFrame(np.array(mu, ndmin=2), columns=assets) return mu
[文档] def covar_matrix(X, method="hist", d=0.94, **kwargs): r""" Calculate the covariance matrix using the selected method. Parameters ---------- X : DataFrame of shape (n_samples, n_features) Features matrix, where n_samples is the number of samples and n_features is the number of features. method : str, optional The method used to estimate the covariance matrix: The default is 'hist'. Possible values are: - 'hist': use historical estimates. - 'semi': use semi lower covariance matrix. - 'ewma1': use ewma with adjust=True. For more information see `EWM <https://pandas.pydata.org/pandas-docs/stable/user_guide/window.html#exponentially-weighted-window>`__. - 'ewma2': use ewma with adjust=False. For more information see `EWM <https://pandas.pydata.org/pandas-docs/stable/user_guide/window.html#exponentially-weighted-window>`__. - 'ledoit': use the Ledoit and Wolf Shrinkage method. - 'oas': use the Oracle Approximation Shrinkage method. - 'shrunk': use the basic Shrunk Covariance method. - 'gl': use the basic Graphical Lasso Covariance method. - 'jlogo': use the j-LoGo Covariance method. For more information see: :cite:`b-jLogo`. - 'fixed': denoise using fixed method. For more information see chapter 2 of :cite:`b-MLforAM`. - 'spectral': denoise using spectral method. For more information see chapter 2 of :cite:`b-MLforAM`. - 'shrink': denoise using shrink method. For more information see chapter 2 of :cite:`b-MLforAM`. - 'gerber1': use the Gerber statistic 1. For more information see: :cite:`b-Gerber2021`. - 'gerber2': use the Gerber statistic 2. For more information see: :cite:`b-Gerber2021`. d : scalar The smoothing factor of ewma methods. The default is 0.94. **kwargs: Other variables related to covariance estimation. See `Scikit Learn <https://scikit-learn.org/stable/modules/covariance.html>`_ and chapter 2 of :cite:`b-MLforAM` for more details. Returns ------- cov : nd-array The estimation of covariance matrix. Raises ------ ValueError When the value cannot be calculated. """ if not isinstance(X, pd.DataFrame): raise ValueError("X must be a DataFrame") assets = X.columns.tolist() if method == "hist": cov = np.cov(X.T) if method == "semi": T, N = X.shape mu = X.mean().to_numpy().reshape(1, -1) a = X - np.repeat(mu, T, axis=0) a = np.minimum(a, np.zeros_like(a)) cov = 1 / (T - 1) * a.T @ a elif method == "ewma1": cov = X.ewm(alpha=1 - d).cov() item = cov.iloc[-1, :].name[0] cov = cov.loc[(item, slice(None)), :] elif method == "ewma2": cov = X.ewm(alpha=1 - d, adjust=False).cov() item = cov.iloc[-1, :].name[0] cov = cov.loc[(item, slice(None)), :] elif method == "ledoit": lw = skcov.LedoitWolf(**kwargs) lw.fit(X) cov = lw.covariance_ elif method == "oas": oas = skcov.OAS(**kwargs) oas.fit(X) cov = oas.covariance_ elif method == "shrunk": sc = skcov.ShrunkCovariance(**kwargs) sc.fit(X) cov = sc.covariance_ elif method == "gl": gl = skcov.GraphicalLassoCV(**kwargs) gl.fit(X) cov = gl.covariance_ elif method == "jlogo": S = np.cov(X.T) R = np.corrcoef(X.T) D = np.sqrt(np.clip((1 - R) / 2, a_min=0.0, a_max=1.0)) (_, _, separators, cliques, _) = db.PMFG_T2s(1 - D**2, nargout=4) cov = db.j_LoGo(S, separators, cliques) cov = np.linalg.inv(cov) elif method in ["fixed", "spectral", "shrink"]: cov = np.cov(X.T) T, N = X.shape q = T / N cov = af.denoiseCov(cov, q, kind=method, **kwargs) elif method == "gerber1": cov = gs.gerber_cov_stat1(X, **kwargs) elif method == "gerber2": cov = gs.gerber_cov_stat2(X, **kwargs) cov = pd.DataFrame(np.array(cov, ndmin=2), columns=assets, index=assets) return cov
[文档] def cokurt_matrix(X, method="hist", **kwargs): r""" Calculate the cokurtosis square matrix using the selected method. Parameters ---------- X : DataFrame of shape (n_samples, n_features) Features matrix, where n_samples is the number of samples and n_features is the number of features. method : str, optional The method used to estimate the cokurtosis square matrix: The default is 'hist'. Possible values are: - 'hist': use historical estimates. - 'semi': use semi lower cokurtosis square matrix. - 'fixed': denoise using fixed method. For more information see chapter 2 of :cite:`b-MLforAM`. - 'spectral': denoise using spectral method. For more information see chapter 2 of :cite:`b-MLforAM`. - 'shrink': denoise using shrink method. For more information see chapter 2 of :cite:`b-MLforAM`. **kwargs: Other variables related to covariance estimation. See chapter 2 of :cite:`b-MLforAM` for more details. Returns ------- kurt : nd-array The estimation of cokurtosis square matrix. Raises ------ ValueError When the value cannot be calculated. """ if not isinstance(X, pd.DataFrame): raise ValueError("X must be a DataFrame") assets = X.columns.tolist() cols = list(product(assets, assets)) cols = [y + " - " + x for x, y in cols] if method == "hist": kurt = af.cokurtosis_matrix(X) if method == "semi": kurt = af.semi_cokurtosis_matrix(X) elif method in ["fixed", "spectral", "shrink"]: kurt = cf.kurtosis_matrix(X) T, N = X.shape q = T / N kurt = af.denoiseCov(kurt, q, kind=method, **kwargs) kurt = pd.DataFrame(np.array(kurt, ndmin=2), columns=cols, index=cols) return kurt
[文档] def forward_regression(X, y, criterion="pvalue", threshold=0.05, verbose=False): r""" Select the variables that estimate the best model using stepwise forward regression. In case none of the variables has a p-value lower than threshold, the algorithm will select the variable with lowest p-value. Parameters ---------- X : DataFrame of shape (n_samples, n_features) Features matrix, where n_samples is the number of samples and n_features is the number of features. y : Series of shape (n_samples, 1) Target vector, where n_samples in the number of samples. criterion : str, optional The default is 'pvalue'. Possible values of the criterion used to select the best features are: - 'pvalue': select the features based on p-values. - 'AIC': select the features based on lowest Akaike Information Criterion. - 'SIC': select the features based on lowest Schwarz Information Criterion. - 'R2': select the features based on highest R Squared. - 'R2_A': select the features based on highest Adjusted R Squared. thresholdt : scalar, optional Is the maximum p-value for each variable that will be accepted in the model. The default is 0.05. verbose : bool, optional Enable verbose output. The default is False. Returns ------- value : list A list of the variables that produce the best model. Raises ------ ValueError When the value cannot be calculated. """ if not isinstance(X, pd.DataFrame): raise ValueError("X must be a DataFrame") if not isinstance(y, pd.DataFrame) and not isinstance(y, pd.Series): raise ValueError("y must be a column DataFrame") if isinstance(y, pd.DataFrame): if y.shape[0] > 1 and y.shape[1] > 1: raise ValueError("y must be a column DataFrame") included = [] aic = 1e10 sic = 1e10 r2 = -1e10 r2_a = -1e10 pvalues = None if criterion == "pvalue": value = 0 while value <= threshold: excluded = list(set(X.columns) - set(included)) best_pvalue = 999999 new_feature = None for i in excluded: factors = included + [i] X1 = X[factors] X1 = sm.add_constant(X1) results = sm.OLS(y, X1).fit() new_pvalues = results.pvalues new_pvalues = new_pvalues[new_pvalues.index != "const"] cond_1 = new_pvalues.max() if best_pvalue > new_pvalues[i] and cond_1 <= threshold: best_pvalue = results.pvalues[i] new_feature = i pvalues = new_pvalues.copy() if pvalues is not None: value = pvalues[pvalues.index != "const"].max() if new_feature is None: break else: included.append(new_feature) if verbose: print("Add {} with p-value {:.6}".format(new_feature, best_pvalue)) # This part is how to deal when there isn't an asset with pvalue lower than threshold if len(included) == 0: excluded = list(set(X.columns) - set(included)) best_pvalue = 999999 new_feature = None for i in excluded: factors = included + [i] X1 = X[factors] X1 = sm.add_constant(X1) results = sm.OLS(y, X1).fit() new_pvalues = results.pvalues new_pvalues = new_pvalues[new_pvalues.index != "const"] if best_pvalue > new_pvalues[i]: best_pvalue = results.pvalues[i] new_feature = i pvalues = new_pvalues.copy() value = pvalues[pvalues.index != "const"].max() included.append(new_feature) if verbose: print( "Add {} with p-value {:.6}".format(pvalues.idxmax(), pvalues.max()) ) else: excluded = X.columns.tolist() flag = False n = len(excluded) for j in range(n): value = {} n_ini = len(excluded) for i in excluded: factors = included.copy() factors.append(i) X1 = X[factors] X1 = sm.add_constant(X1) results = sm.OLS(y, X1).fit() if criterion == "AIC": value[i] = results.aic elif criterion == "SIC": value[i] = results.bic elif criterion == "R2": value[i] = results.rsquared elif criterion == "R2_A": value[i] = results.rsquared_adj value = pd.Series(value) if criterion in ["AIC", "SIC"]: key = value.idxmin() value = value.min() if criterion in ["R2", "R2_A"]: key = value.idxmax() value = value.max() if criterion == "AIC": if value < aic: excluded.remove(key) included.append(key) aic = value flag = True elif criterion == "SIC": if value < sic: excluded.remove(key) included.append(key) sic = value flag = True elif criterion == "R2": if value > r2: excluded.remove(key) included.append(key) r2 = value flag = True elif criterion == "R2_A": if value > r2_a: excluded.remove(key) included.append(key) r2_a = value flag = True if n_ini == len(excluded): break if flag and verbose: print("Add {} with {} {:.6}".format(key, criterion, value)) flag = False return included
[文档] def backward_regression(X, y, criterion="pvalue", threshold=0.05, verbose=False): r""" Select the variables that estimate the best model using stepwise backward regression. In case none of the variables has a p-value lower than threshold, the algorithm will select the variable with lowest p-value. Parameters ---------- X : DataFrame of shape (n_samples, n_features) Features matrix, where n_samples is the number of samples and n_features is the number of features. y : Series of shape (n_samples, 1) Target vector, where n_samples in the number of samples. criterion : str, optional The default is 'pvalue'. Possible values of the criterion used to select the best features are: - 'pvalue': select the features based on p-values. - 'AIC': select the features based on lowest Akaike Information Criterion. - 'SIC': select the features based on lowest Schwarz Information Criterion. - 'R2': select the features based on highest R Squared. - 'R2_A': select the features based on highest Adjusted R Squared. threshold : scalar, optional Is the maximum p-value for each variable that will be accepted in the model. The default is 0.05. verbose : bool, optional Enable verbose output. The default is False. Returns ------- value : list A list of the variables that produce the best model. Raises ------ ValueError When the value cannot be calculated. """ if not isinstance(X, pd.DataFrame): raise ValueError("X must be a DataFrame") if not isinstance(y, pd.DataFrame) and not isinstance(y, pd.Series): raise ValueError("y must be a column DataFrame") if isinstance(y, pd.DataFrame): if y.shape[0] > 1 and y.shape[1] > 1: raise ValueError("y must be a column DataFrame") X1 = sm.add_constant(X) results = sm.OLS(y, X1).fit() pvalues = results.pvalues aic = results.aic sic = results.bic r2 = results.rsquared r2_a = results.rsquared_adj included = pvalues.index.tolist() if criterion == "pvalue": excluded = ["const"] while pvalues[pvalues.index != "const"].max() > threshold: factors = pvalues[~pvalues.index.isin(excluded)].index.tolist() X1 = X[factors] X1 = sm.add_constant(X1) results = sm.OLS(y, X1).fit() pvalues = results.pvalues pvalues = pvalues[pvalues.index != "const"] if pvalues.shape[0] == 0: break excluded = ["const", pvalues.idxmax()] if verbose and pvalues.max() > threshold: print( "Drop {} with p-value {:.6}".format(pvalues.idxmax(), pvalues.max()) ) included = pvalues[pvalues.index != "const"].index.tolist() # This part is how to deal when there isn't an asset with pvalue lower than threshold if len(included) == 0: excluded = list(set(X.columns) - set(included)) best_pvalue = 999999 new_feature = None for i in excluded: factors = included + [i] X1 = X[factors] X1 = sm.add_constant(X1) results = sm.OLS(y, X1).fit() new_pvalues = results.pvalues new_pvalues = results.pvalues new_pvalues = new_pvalues[new_pvalues.index != "const"] if best_pvalue > new_pvalues[i]: best_pvalue = results.pvalues[i] new_feature = i pvalues = new_pvalues.copy() value = pvalues[pvalues.index != "const"].max() included.append(new_feature) if verbose: print( "Add {} with p-value {:.6}".format(pvalues.idxmax(), pvalues.max()) ) else: included.remove("const") flag = False n = len(included) for j in range(n): value = {} n_ini = len(included) for i in included: factors = included.copy() factors.remove(i) X1 = X[factors] X1 = sm.add_constant(X1) results = sm.OLS(y, X1).fit() if criterion == "AIC": value[i] = results.aic elif criterion == "SIC": value[i] = results.bic elif criterion == "R2": value[i] = results.rsquared elif criterion == "R2_A": value[i] = results.rsquared_adj value = pd.Series(value) if criterion in ["AIC", "SIC"]: key = value.idxmin() value = value.min() if criterion in ["R2", "R2_A"]: key = value.idxmax() value = value.max() if criterion == "AIC": if value < aic: included.remove(key) aic = value flag = True elif criterion == "SIC": if value < sic: included.remove(key) sic = value flag = True elif criterion == "R2": if value > r2: included.remove(key) r2 = value flag = True elif criterion == "R2_A": if value > r2_a: included.remove(key) r2_a = value flag = True if n_ini == len(included): break if flag and verbose: print("Drop {} with {} {:.6}".format(key, criterion, value)) flag = False return included
[文档] def PCR(X, y, n_components=0.95): r""" Estimate the coefficients using Principal Components Regression (PCR). Parameters ---------- X : DataFrame of shape (n_samples, n_features) Features matrix, where n_samples is the number of samples and n_features is the number of features. y : Series of shape (n_samples, 1) Target vector, where n_samples in the number of samples. n_components : int, float, None or str, optional if 1 < n_components (int), it represents the number of components that will be keep. if 0 < n_components < 1 (float), it represents the percentage of variance that the is explained by the components kept. See `PCA <https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html>`_ for more details. The default is 0.95. Returns ------- value : nd-array An array with the coefficients of the model calculated using PCR. Raises ------ ValueError When the value cannot be calculated. """ if not isinstance(X, pd.DataFrame): raise ValueError("X must be a DataFrame") if not isinstance(y, pd.DataFrame) and not isinstance(y, pd.Series): raise ValueError("y must be a column DataFrame") if isinstance(y, pd.DataFrame): if y.shape[0] > 1 and y.shape[1] > 1: raise ValueError("y must be a column DataFrame") scaler = StandardScaler() scaler.fit(X) X_std = scaler.transform(X) pca = PCA(n_components=n_components) pca.fit(X_std) Z_p = pca.transform(X_std) V_p = pca.components_.T results = sm.OLS(y, sm.add_constant(Z_p)).fit() beta_pc = results.params[1:] beta_pc = np.array(beta_pc, ndmin=2) std = np.array(np.std(X, axis=0, ddof=1), ndmin=2) mean = np.array(np.mean(X, axis=0), ndmin=2) beta = V_p @ beta_pc.T / std.T beta_0 = np.array(y.mean(), ndmin=2) - np.sum(beta * mean.T) beta = np.insert(beta, 0, beta_0) beta = np.array(beta, ndmin=2) return beta
[文档] def loadings_matrix( X, Y, feature_selection="stepwise", stepwise="Forward", criterion="pvalue", threshold=0.05, n_components=0.95, verbose=False, ): r""" Estimate the loadings matrix using stepwise regression. Parameters ---------- X : DataFrame of shape (n_samples, n_features) Features matrix, where n_samples is the number of samples and n_features is the number of features. Y : DataFrame of shape (n_samples, n_assets) Target matrix, where n_samples in the number of samples and n_assets is the number of assets. feature_selection: str 'stepwise' or 'PCR', optional Indicate the method used to estimate the loadings matrix. The default is 'stepwise'. stepwise: str 'Forward' or 'Backward', optional Indicate the method used for stepwise regression. The default is 'Forward'. criterion : str, optional The default is 'pvalue'. Possible values of the criterion used to select the best features are: - 'pvalue': select the features based on p-values. - 'AIC': select the features based on lowest Akaike Information Criterion. - 'SIC': select the features based on lowest Schwarz Information Criterion. - 'R2': select the features based on highest R Squared. - 'R2_A': select the features based on highest Adjusted R Squared. threshold : scalar, optional Is the maximum p-value for each variable that will be accepted in the model. The default is 0.05. n_components : int, float, None or str, optional if 1 < n_components (int), it represents the number of components that will be keep. if 0 < n_components < 1 (float), it represents the percentage of variance that the is explained by the components kept. See `PCA <https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html>`_ for more details. The default is 0.95. verbose : bool, optional Enable verbose output. The default is False. Returns ------- loadings : DataFrame A DataFrame with the loadings matrix. Raises ------ ValueError When the value cannot be calculated. """ if not isinstance(X, pd.DataFrame): raise ValueError("X must be a DataFrame") if not isinstance(Y, pd.DataFrame): raise ValueError("Y must be a DataFrame") rows = Y.columns.tolist() cols = X.columns.tolist() cols.insert(0, "const") loadings = np.zeros((len(rows), len(cols))) loadings = pd.DataFrame(loadings, index=rows, columns=cols) for i in rows: if feature_selection == "stepwise": if stepwise == "Forward": included = forward_regression( X, Y[i], criterion=criterion, threshold=threshold, verbose=verbose ) elif stepwise == "Backward": included = backward_regression( X, Y[i], criterion=criterion, threshold=threshold, verbose=verbose ) else: raise ValueError("Choose and adequate stepwise method") results = sm.OLS(Y[i], sm.add_constant(X[included])).fit() params = results.params loadings.loc[i, params.index.tolist()] = params.T elif feature_selection == "PCR": beta = PCR(X, Y[i], n_components=n_components) beta = pd.Series(np.ravel(beta), index=cols) loadings.loc[i, cols] = beta.T return loadings
[文档] def risk_factors( X, Y, B=None, const=False, method_mu="hist", method_cov="hist", feature_selection="stepwise", stepwise="Forward", criterion="pvalue", threshold=0.05, n_components=0.95, error=True, **kwargs ): r""" Estimate the expected returns vector and covariance matrix based on risk factors models :cite:`b-Ross` :cite:`b-Fan`. .. math:: \begin{aligned} R & = \alpha + B F + \epsilon \\ \mu_{f} & = \alpha +BE(F) \\ \Sigma_{f} & = B \Sigma_{F} B^{T} + \Sigma_{\epsilon} \\ \end{aligned} where: :math:`R` is the series returns. :math:`\alpha` is the intercept. :math:`B` is the loadings matrix. :math:`F` is the expected returns vector of the risk factors. :math:`\Sigma_{F}` is the covariance matrix of the risk factors. :math:`\Sigma_{\epsilon}` is the covariance matrix of error terms. :math:`\mu_{f}` is the expected returns vector obtained with the risk factor model. :math:`\Sigma_{f}` is the covariance matrix obtained with the risk factor model. Parameters ---------- X : DataFrame of shape (n_samples, n_features) Features matrix, where n_samples is the number of samples and n_features is the number of features. Y : DataFrame of shape (n_samples, n_assets) Target matrix, where n_samples in the number of samples and n_assets is the number of assets. B : DataFrame of shape (n_assets, n_features), optional Loadings matrix. If is not specified, is estimated using stepwise regression. The default is None. const : bool, optional Indicate if the loadings matrix has a constant. The default is False. method_mu : str, optional The method used to estimate the expected returns of factors. The default value is 'hist'. Possible values are: - 'hist': use historical estimates. - 'ewma1'': use ewma with adjust=True, see `EWM <https://pandas.pydata.org/pandas-docs/stable/user_guide/computation.html#exponentially-weighted-windows>`_ for more details. - 'ewma2': use ewma with adjust=False, see `EWM <https://pandas.pydata.org/pandas-docs/stable/user_guide/computation.html#exponentially-weighted-windows>`_ for more details. - 'JS': James-Stein estimator. For more information see :cite:`b-Meucci2005` and :cite:`b-Feng2016`. - 'BS': Bayes-Stein estimator. For more information see :cite:`b-Jorion1986`. - 'BOP': BOP estimator. For more information see :cite:`b-Bodnar2019`. method_cov : str, optional The method used to estimate the covariance matrix of factors. The default is 'hist'. Possible values are: - 'hist': use historical estimates. - 'ewma1'': use ewma with adjust=True, see `EWM <https://pandas.pydata.org/pandas-docs/stable/user_guide/computation.html#exponentially-weighted-windows>`_ for more details. - 'ewma2': use ewma with adjust=False, see `EWM <https://pandas.pydata.org/pandas-docs/stable/user_guide/computation.html#exponentially-weighted-windows>`_ for more details. - 'ledoit': use the Ledoit and Wolf Shrinkage method. - 'oas': use the Oracle Approximation Shrinkage method. - 'shrunk': use the basic Shrunk Covariance method. - 'gl': use the basic Graphical Lasso Covariance method. - 'jlogo': use the j-LoGo Covariance method. For more information see: :cite:`b-jLogo`. - 'fixed': denoise using fixed method. For more information see chapter 2 of :cite:`b-MLforAM`. - 'spectral': denoise using spectral method. For more information see chapter 2 of :cite:`b-MLforAM`. - 'shrink': denoise using shrink method. For more information see chapter 2 of :cite:`b-MLforAM`. - 'gerber1': use the Gerber statistic 1. For more information see: :cite:`b-Gerber2021`. - 'gerber2': use the Gerber statistic 2. For more information see: :cite:`b-Gerber2021`. feature_selection: str, 'stepwise' or 'PCR', optional Indicate the method used to estimate the loadings matrix. The default is 'stepwise'. stepwise: str, 'Forward' or 'Backward' Indicate the method used for stepwise regression. The default is 'Forward'. criterion : str, optional The default is 'pvalue'. Possible values of the criterion used to select the best features are: - 'pvalue': select the features based on p-values. - 'AIC': select the features based on lowest Akaike Information Criterion. - 'SIC': select the features based on lowest Schwarz Information Criterion. - 'R2': select the features based on highest R Squared. - 'R2_A': select the features based on highest Adjusted R Squared. threshold : scalar, optional Is the maximum p-value for each variable that will be accepted in the model. The default is 0.05. n_components : int, float, None or str, optional if 1 < n_components (int), it represents the number of components that will be keep. if 0 < n_components < 1 (float), it represents the percentage of variance that the is explained by the components kept. See `PCA <https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html>`_ for more details. The default is 0.95. error : bool Indicate if diagonal covariance matrix of errors is included (only when B is estimated through a regression). **kwargs : dict Other variables related to the expected returns and covariance estimation. Returns ------- mu : DataFrame The mean vector of risk factors model. cov : DataFrame The covariance matrix of risk factors model. returns : DataFrame The returns based on a risk factor model. nav : DataFrame The cumulated uncompounded returns based on a risk factor model. Raises ------ ValueError When the value cannot be calculated. """ if not isinstance(X, pd.DataFrame) and not isinstance(Y, pd.DataFrame): raise ValueError("X and Y must be DataFrames") if B is None: B = loadings_matrix( X, Y, feature_selection=feature_selection, stepwise=stepwise, criterion=criterion, threshold=threshold, n_components=n_components, verbose=False, ) elif not isinstance(B, pd.DataFrame): raise ValueError("B must be a DataFrame") X1 = X.copy() if const == True or "const" in B.columns.tolist(): X1 = sm.add_constant(X) assets = Y.columns.tolist() dates = X.index.tolist() mu_f = np.array(mean_vector(X1, method=method_mu, **kwargs), ndmin=2) S_f = np.array(covar_matrix(X1, method=method_cov, **kwargs), ndmin=2) B = np.array(B, ndmin=2) returns = np.array(X1, ndmin=2) @ B.T mu = B @ mu_f.T if error == True: e = np.array(Y, ndmin=2) - returns S_e = np.diag(np.var(np.array(e), ddof=1, axis=0)) S = B @ S_f @ B.T + S_e elif error == False: S = B @ S_f @ B.T mu = pd.DataFrame(mu.T, columns=assets) cov = pd.DataFrame(S, index=assets, columns=assets) returns = pd.DataFrame(returns, index=dates, columns=assets) return mu, cov, returns
[文档] def black_litterman( X, w, P, Q, delta=1, rf=0, eq=True, method_mu="hist", method_cov="hist", **kwargs ): r""" Estimate the expected returns vector and covariance matrix based on the Black Litterman model :cite:`b-BlackLitterman` :cite:`b-Black1`. .. math:: \begin{aligned} \Pi & = \delta \Sigma w \\ \Pi_{BL} & = \left [ (\tau\Sigma)^{-1}+ P^{T} \Omega^{-1}P \right]^{-1} \left[(\tau\Sigma)^{-1} \Pi + P^{T} \Omega^{-1} Q \right] \\ M & = \left((\tau\Sigma)^{-1} + P^{T}\Omega^{-1} P \right)^{-1} \\ \mu_{BL} & = \Pi_{BL} + r_{f} \\ \Sigma_{BL} & = \Sigma + M \\ \end{aligned} where: :math:`r_{f}` is the risk free rate. :math:`\delta` is the risk aversion factor. :math:`\Pi` is the equilibrium excess returns. :math:`\Sigma` is the covariance matrix. :math:`P` is the views matrix. :math:`Q` is the views returns matrix. :math:`\Omega` is the covariance matrix of the error views. :math:`\mu_{BL}` is the mean vector obtained with the black litterman model. :math:`\Sigma_{BL}` is the covariance matrix obtained with the black litterman model. Parameters ---------- X : DataFrame of shape (n_samples, n_assets) Assets matrix, where n_samples is the number of samples and n_assets is the number of assets. w : DataFrame of shape (n_assets, 1) Weights matrix, where n_assets is the number of assets. P : DataFrame of shape (n_views, n_assets) Analyst's views matrix, can be relative or absolute. Q : DataFrame of shape (n_views, 1) Expected returns of analyst's views. delta : float, optional Risk aversion factor. The default value is 1. rf : scalar, optional Risk free rate. The default is 0. eq : bool, optional Indicate if use equilibrium or historical excess returns. The default is True. method_mu : str, optional The method used to estimate the expected returns. The default value is 'hist'. - 'hist': use historical estimates. - 'ewma1': use ewma with adjust=True. For more information see `EWM <https://pandas.pydata.org/pandas-docs/stable/user_guide/window.html#exponentially-weighted-window>`__. - 'ewma2': use ewma with adjust=False. For more information see `EWM <https://pandas.pydata.org/pandas-docs/stable/user_guide/window.html#exponentially-weighted-window>`__. - 'JS': James-Stein estimator. For more information see :cite:`b-Meucci2005` and :cite:`b-Feng2016`. - 'BS': Bayes-Stein estimator. For more information see :cite:`b-Jorion1986`. - 'BOP': BOP estimator. For more information see :cite:`b-Bodnar2019`. method_cov : str, optional The method used to estimate the covariance matrix: The default is 'hist'. Possible values are: - 'hist': use historical estimates. - 'ewma1': use ewma with adjust=True. For more information see `EWM <https://pandas.pydata.org/pandas-docs/stable/user_guide/window.html#exponentially-weighted-window>`__. - 'ewma2': use ewma with adjust=False. For more information see `EWM <https://pandas.pydata.org/pandas-docs/stable/user_guide/window.html#exponentially-weighted-window>`__. - 'ledoit': use the Ledoit and Wolf Shrinkage method. - 'oas': use the Oracle Approximation Shrinkage method. - 'shrunk': use the basic Shrunk Covariance method. - 'gl': use the basic Graphical Lasso Covariance method. - 'jlogo': use the j-LoGo Covariance method. For more information see: :cite:`b-jLogo`. - 'fixed': denoise using fixed method. For more information see chapter 2 of :cite:`b-MLforAM`. - 'spectral': denoise using spectral method. For more information see chapter 2 of :cite:`b-MLforAM`. - 'shrink': denoise using shrink method. For more information see chapter 2 of :cite:`b-MLforAM`. - 'gerber1': use the Gerber statistic 1. For more information see: :cite:`b-Gerber2021`. - 'gerber2': use the Gerber statistic 2. For more information see: :cite:`b-Gerber2021`. **kwargs : dict Other variables related to the expected returns and covariance estimation. Returns ------- mu : DataFrame The mean vector of Black Litterman model. cov : DataFrame The covariance matrix of Black Litterman model. w : DataFrame The equilibrium weights of Black Litterman model, without constraints. Raises ------ ValueError When the value cannot be calculated. """ if not isinstance(X, pd.DataFrame) and not isinstance(w, pd.DataFrame): raise ValueError("X and w must be DataFrames") if w.shape[0] > 1 and w.shape[1] > 1: raise ValueError("w must be a column DataFrame") assets = X.columns.tolist() w = np.array(w, ndmin=2) if w.shape[0] == 1: w = w.T mu = np.array(mean_vector(X, method=method_mu, **kwargs), ndmin=2) S = np.array(covar_matrix(X, method=method_cov, **kwargs), ndmin=2) P = np.array(P, ndmin=2) Q = np.array(Q, ndmin=2) tau = 1 / X.shape[0] Omega = np.array(np.diag(np.diag(P @ (tau * S) @ P.T)), ndmin=2) if eq == True: PI = delta * (S @ w) elif eq == False: PI = mu.T - rf PI_ = inv(inv(tau * S) + P.T @ inv(Omega) @ P) @ ( inv(tau * S) @ PI + P.T @ inv(Omega) @ Q ) M = inv(inv(tau * S) + P.T @ inv(Omega) @ P) # PI_1 = PI + (tau * S* P.T) * inv(P * tau * S * P.T + Omega) * (Q - P * PI) # M = tau * S - (tau * S * P.T) * inv(P * tau * S * P.T + Omega) * P * tau * S mu = PI_ + rf mu = mu.T cov = S + M w = inv(delta * cov) @ PI_ mu = pd.DataFrame(mu, columns=assets) cov = pd.DataFrame(cov, index=assets, columns=assets) w = pd.DataFrame(w, index=assets) return mu, cov, w
[文档] def augmented_black_litterman( X, w, F=None, B=None, P=None, Q=None, P_f=None, Q_f=None, delta=1, rf=0, eq=True, const=True, method_mu="hist", method_cov="hist", **kwargs ): r""" Estimate the expected returns vector and covariance matrix based on the Augmented Black Litterman model :cite:`b-WCheung`. .. math:: \begin{aligned} \Pi^{a} & = \delta \left [ \begin{array}{c} \Sigma \\ \Sigma_{F} B^{T} \\ \end{array} \right ] w \\ P^{a} & = \left [ \begin{array}{cc} P & 0 \\ 0 & P_{F} \\ \end{array} \right ] \\ Q^{a} & = \left [ \begin{array}{c} Q \\ Q_{F} \\ \end{array} \right ] \\ \Sigma^{a} & = \left [ \begin{array}{cc} \Sigma & B \Sigma_{F}\\ \Sigma_{F} B^{T} & \Sigma_{F} \\ \end{array} \right ] \\ \Omega^{a} & = \left [ \begin{array}{cc} \Omega & 0 \\ 0 & \Omega_{F} \\ \end{array} \right ] \\ \Pi^{a}_{BL} & = \left [ (\tau \Sigma^{a})^{-1} + (P^{a})^{T} (\Omega^{a})^{-1} P^{a} \right ]^{-1} \left [ (\tau\Sigma^{a})^{-1} \Pi^{a} + (P^{a})^{T} (\Omega^{a})^{-1} Q^{a} \right ] \\ M^{a} & = \left ( (\tau\Sigma^{a})^{-1} + (P^{a})^{T} (\Omega^{a})^{-1} P^{a} \right )^{-1} \\ \mu^{a}_{BL} & = \Pi^{a}_{BL} + r_{f} \\ \Sigma^{a}_{BL} & = \Sigma^{a} + M^{a} \\ \end{aligned} where: :math:`r_{f}` is the risk free rate. :math:`\delta` is the risk aversion factor. :math:`B` is the loadings matrix. :math:`\Sigma` is the covariance matrix of assets. :math:`\Sigma_{F}` is the covariance matrix of factors. :math:`\Sigma^{a}` is the augmented covariance matrix. :math:`P` is the assets views matrix. :math:`Q` is the assets views returns matrix. :math:`P_{F}` is the factors views matrix. :math:`Q_{F}` is the factors views returns matrix. :math:`P^{a}` is the augmented views matrix. :math:`Q^{a}` is the augmented views returns matrix. :math:`\Pi^{a}` is the augmented equilibrium excess returns. :math:`\Omega` is the covariance matrix of errors of assets views. :math:`\Omega_{F}` is the covariance matrix of errors of factors views. :math:`\Omega^{a}` is the covariance matrix of errors of augmented views. :math:`\mu^{a}_{BL}` is the mean vector obtained with the Augmented Black Litterman model. :math:`\Sigma^{a}_{BL}` is the covariance matrix obtained with the Augmented Black Litterman model. Parameters ---------- X : DataFrame of shape (n_samples, n_assets) Assets matrix, where n_samples is the number of samples and n_assets is the number of features. w : DataFrame of shape (n_assets, 1) Weights matrix, where n_assets is the number of assets. F : DataFrame of shape (n_samples, n_features) Features matrix, where n_samples is the number of samples and n_features is the number of features. B : DataFrame of shape (n_assets, n_features), optional Loadings matrix. The default is None. P : DataFrame of shape (n_views, n_assets) Analyst's views matrix, can be relative or absolute. Q : DataFrame of shape (n_views, 1) Expected returns of analyst's views. P_f : DataFrame of shape (n_views, n_features) Analyst's factors views matrix, can be relative or absolute. Q_f : DataFrame of shape (n_views, 1) Expected returns of analyst's factors views. delta : float, optional Risk aversion factor. The default value is 1. rf : scalar, optional Risk free rate. The default is 0. eq : bool, optional Indicate if use equilibrium or historical excess returns. The default is True. const : bool, optional Indicate if use equilibrium or historical excess returns. The default is True. method_mu : str, optional The method used to estimate the expected returns. The default value is 'hist'. - 'hist': use historical estimates. - 'ewma1': use ewma with adjust=True. For more information see `EWM <https://pandas.pydata.org/pandas-docs/stable/user_guide/window.html#exponentially-weighted-window>`__. - 'ewma2': use ewma with adjust=False. For more information see `EWM <https://pandas.pydata.org/pandas-docs/stable/user_guide/window.html#exponentially-weighted-window>`__. - 'JS': James-Stein estimator. For more information see :cite:`b-Meucci2005` and :cite:`b-Feng2016`. - 'BS': Bayes-Stein estimator. For more information see :cite:`b-Jorion1986`. - 'BOP': BOP estimator. For more information see :cite:`b-Bodnar2019`. method_cov : str, optional The method used to estimate the covariance matrix. The default is 'hist'. Possible values are: - 'hist': use historical estimates. - 'ewma1': use ewma with adjust=True. For more information see `EWM <https://pandas.pydata.org/pandas-docs/stable/user_guide/window.html#exponentially-weighted-window>`__. - 'ewma2': use ewma with adjust=False. For more information see `EWM <https://pandas.pydata.org/pandas-docs/stable/user_guide/window.html#exponentially-weighted-window>`__. - 'ledoit': use the Ledoit and Wolf Shrinkage method. - 'oas': use the Oracle Approximation Shrinkage method. - 'shrunk': use the basic Shrunk Covariance method. - 'gl': use the basic Graphical Lasso Covariance method. - 'jlogo': use the j-LoGo Covariance method. For more information see: :cite:`b-jLogo`. - 'fixed': denoise using fixed method. For more information see chapter 2 of :cite:`b-MLforAM`. - 'spectral': denoise using spectral method. For more information see chapter 2 of :cite:`b-MLforAM`. - 'shrink': denoise using shrink method. For more information see chapter 2 of :cite:`b-MLforAM`. - 'gerber1': use the Gerber statistic 1. For more information see: :cite:`b-Gerber2021`. - 'gerber2': use the Gerber statistic 2. For more information see: :cite:`b-Gerber2021`. **kwargs : dict Other variables related to the expected returns and covariance estimation. Returns ------- mu : DataFrame The mean vector of Augmented Black Litterman model. cov : DataFrame The covariance matrix of Augmented Black Litterman model. w : DataFrame The equilibrium weights of Augmented Black Litterman model, without constraints. Raises ------ ValueError When the value cannot be calculated. """ if not isinstance(X, pd.DataFrame) and not isinstance(w, pd.DataFrame): raise ValueError("X and w must be DataFrames") if not isinstance(F, pd.DataFrame) and not isinstance(B, pd.DataFrame): raise ValueError("F and B must be DataFrames") if w.shape[0] > 1 and w.shape[1] > 1: raise ValueError("w must be a column DataFrame") assets = X.columns.tolist() N = len(assets) w = np.array(w, ndmin=2) if w.shape[0] == 1: w = w.T if B is not None: B = np.array(B, ndmin=2) if const == True: alpha = B[:, :1] B = B[:, 1:] mu = np.array(mean_vector(X, method=method_mu, **kwargs), ndmin=2) S = np.array(covar_matrix(X, method=method_cov, **kwargs), ndmin=2) tau = 1 / X.shape[0] if F is not None: mu_f = np.array(mean_vector(F, method=method_mu, **kwargs), ndmin=2) S_f = np.array(covar_matrix(F, method=method_cov, **kwargs), ndmin=2) if P is not None and Q is not None and P_f is None and Q_f is None: S_a = S P_a = P Q_a = Q Omega = np.array(np.diag(np.diag(P @ (tau * S) @ P.T)), ndmin=2) Omega_a = Omega if eq == True: PI_a_ = delta * S_a @ w elif eq == False: PI_a_ = mu.T - rf elif P is None and Q is None and P_f is not None and Q_f is not None: S_a = S_f P_a = P_f Q_a = Q_f Omega_f = np.array(np.diag(np.diag(P_f @ (tau * S_f) @ P_f.T)), ndmin=2) Omega_a = Omega_f if eq == True: PI_a_ = delta * (S_f @ B.T) @ w elif eq == False: PI_a_ = mu_f.T - rf elif P is not None and Q is not None and P_f is not None and Q_f is not None: S_a = np.hstack((np.vstack((S, S_f @ B.T)), np.vstack((B @ S_f, S_f)))) P = np.array(P, ndmin=2) Q = np.array(Q, ndmin=2) P_f = np.array(P_f, ndmin=2) Q_f = np.array(Q_f, ndmin=2) zeros_1 = np.zeros((P_f.shape[0], P.shape[1])) zeros_2 = np.zeros((P.shape[0], P_f.shape[1])) P_a = np.hstack((np.vstack((P, zeros_1)), np.vstack((zeros_2, P_f)))) Q_a = np.vstack((Q, Q_f)) Omega = np.array(np.diag(np.diag(P @ (tau * S) @ P.T)), ndmin=2) Omega_f = np.array(np.diag(np.diag(P_f @ (tau * S_f) @ P_f.T)), ndmin=2) zeros = np.zeros((Omega.shape[0], Omega_f.shape[0])) Omega_a = np.hstack((np.vstack((Omega, zeros.T)), np.vstack((zeros, Omega_f)))) if eq == True: PI_a_ = delta * (np.vstack((S, S_f @ B.T)) @ w) elif eq == False: PI_a_ = np.vstack((mu.T, mu_f.T)) - rf PI_a = inv(inv(tau * S_a) + P_a.T @ inv(Omega_a) @ P_a) @ ( inv(tau * S_a) @ PI_a_ + P_a.T @ inv(Omega_a) @ Q_a ) M_a = inv(inv(tau * S_a) + P_a.T @ inv(Omega_a) @ P_a) # PI_a = PI_a_ + (tau * S_a @ P_a.T) * inv(P_a @ tau * S_a @ P_a.T + Omega) * (Q_a - P_a @ PI_a_) # M = tau * S_a - (tau * S_a @ P_a.T) * inv(P_a @ tau * S_a @ P_a.T + Omega_a) @ P_a @ tau * S_a mu_a = PI_a + rf mu_a = mu_a.T cov_a = S_a + M_a w_a = inv(delta * cov_a) @ PI_a if P is None and Q is None and P_f is not None and Q_f is not None: mu_a = mu_a @ B.T cov_a = B @ cov_a @ B.T w_a = inv(delta * cov_a) @ B @ PI_a if const == True: mu_a = mu_a[:, :N] + alpha.T mu_a = pd.DataFrame(mu_a[:, :N], columns=assets) cov_a = pd.DataFrame(cov_a[:N, :N], index=assets, columns=assets) w_a = pd.DataFrame(w_a[:N, 0], index=assets) return mu_a, cov_a, w_a
[文档] def black_litterman_bayesian( X, F, B, P_f, Q_f, delta=1, rf=0, eq=True, const=True, diag=True, method_mu="hist", method_cov="hist", **kwargs ): r""" Estimate the expected returns vector and covariance matrix based on the black litterman model :cite:`b-BLB`. .. math:: \begin{aligned} \Sigma_{F} & = B \Sigma_{F} B^{T} + D \\ \overline{\Pi}_{F} & = \left ( \Sigma_{F}^{-1} + P_{F}^{T}\Omega_{F}^{-1}P_{F} \right )^{-1} \left ( \Sigma_{F}^{-1}\Pi_{F} + P_{F}^{T}\Omega_{F}^{-1}Q_{F} \right) \\ \overline{\Sigma}_{F} & = \left ( \Sigma_{F}^{-1} + P_{F}^{T}\Omega_{F}^{-1}P_{F} \right )^{-1} \\ \Sigma_{BLB} & = \left( \Sigma^{-1} - \Sigma^{-1} B \left( \overline{\Sigma}_{F}^{-1} + B^{T}\Sigma^{-1}B \right)^{-1} B^{T}\Sigma^{-1} \right )^{-1} \\ \mu_{BLB} & = \Sigma_{BLB} \left ( \Sigma^{-1} B \left( \overline{\Sigma}_{F}^{-1} +B^{T}\Sigma^{-1}B \right)^{-1} \overline{\Sigma}_{F}^{-1} \overline{\Pi}_{F} \right ) + r_{f} \\ \end{aligned} where: :math:`r_{f}` is the risk free rate. :math:`B` is the loadings matrix. :math:`D` is a diagonal matrix of variance of errors of a factor model. :math:`\Sigma` is the covariance matrix obtained with a factor model. :math:`\Pi_{F}` is the equilibrium excess returns of factors. :math:`\overline{\Pi}_{F}` is the posterior excess returns of factors. :math:`\Sigma_{F}` is the covariance matrix of factors. :math:`\overline{\Sigma}_{F}` is the posterior covariance matrix of factors. :math:`P_{F}` is the factors views matrix. :math:`Q_{F}` is the factors views returns matrix. :math:`\Omega_{F}` is the covariance matrix of errors of factors views. :math:`\mu_{BLB}` is the mean vector obtained with the Black Litterman Bayesian model or posterior predictive mean. :math:`\Sigma_{BLB}` is the covariance matrix obtained with the Black Litterman Bayesian model or posterior predictive covariance. Parameters ---------- X : DataFrame of shape (n_samples, n_assets) Assets matrix, where n_samples is the number of samples and n_assets is the number of assets. F : DataFrame of shape (n_samples, n_features) Features matrix, where n_samples is the number of samples and n_features is the number of features. B : DataFrame of shape (n_assets, n_features), optional Loadings matrix. The default is None. P_f : DataFrame of shape (n_views, n_features) Analyst's factors views matrix, can be relative or absolute. Q_f : DataFrame of shape (n_views, 1) Expected returns of analyst's factors views. delta : float, optional Risk aversion factor. The default value is 1. rf : scalar, optional Risk free rate. The default is 0. eq : bool, optional Indicate if use equilibrium or historical excess returns. The default is True. const : bool, optional Indicate if the loadings matrix has a constant. The default is True. diag : bool, optional Indicate if we use the diagonal matrix to calculate covariance matrix of factor model, only useful when we work with a factor model based on a regresion model (only equity portfolio). The default is True. method_mu : str, optional The method used to estimate the expected returns. The default value is 'hist'. - 'hist': use historical estimates. - 'ewma1': use ewma with adjust=True. For more information see `EWM <https://pandas.pydata.org/pandas-docs/stable/user_guide/window.html#exponentially-weighted-window>`__. - 'ewma2': use ewma with adjust=False, For more information see `EWM <https://pandas.pydata.org/pandas-docs/stable/user_guide/window.html#exponentially-weighted-window>`__. - 'JS': James-Stein estimator. For more information see :cite:`b-Meucci2005` and :cite:`b-Feng2016`. - 'BS': Bayes-Stein estimator. For more information see :cite:`b-Jorion1986`. - 'BOP': BOP estimator. For more information see :cite:`b-Bodnar2019`. method_cov : str, optional The method used to estimate the covariance matrix: The default is 'hist'. Possible values are: - 'hist': use historical estimates. - 'ewma1': use ewma with adjust=True. For more information see `EWM <https://pandas.pydata.org/pandas-docs/stable/user_guide/window.html#exponentially-weighted-window>`__. - 'ewma2': use ewma with adjust=False. For more information see `EWM <https://pandas.pydata.org/pandas-docs/stable/user_guide/window.html#exponentially-weighted-window>`__. - 'ledoit': use the Ledoit and Wolf Shrinkage method. - 'oas': use the Oracle Approximation Shrinkage method. - 'shrunk': use the basic Shrunk Covariance method. - 'gl': use the basic Graphical Lasso Covariance method. - 'jlogo': use the j-LoGo Covariance method. For more information see: :cite:`b-jLogo`. - 'fixed': denoise using fixed method. For more information see chapter 2 of :cite:`b-MLforAM`. - 'spectral': denoise using spectral method. For more information see chapter 2 of :cite:`b-MLforAM`. - 'shrink': denoise using shrink method. For more information see chapter 2 of :cite:`b-MLforAM`. - 'gerber1': use the Gerber statistic 1. For more information see: :cite:`b-Gerber2021`. - 'gerber2': use the Gerber statistic 2. For more information see: :cite:`b-Gerber2021`. **kwargs : dict Other variables related to the expected returns and covariance estimation. Returns ------- mu : DataFrame The mean vector of Black Litterman model. cov : DataFrame The covariance matrix of Black Litterman model. w : DataFrame The equilibrium weights of Black Litterman model, without constraints. Raises ------ ValueError When the value cannot be calculated. """ if not isinstance(X, pd.DataFrame): raise ValueError("X must be DataFrames") if not isinstance(F, pd.DataFrame) and not isinstance(B, pd.DataFrame): raise ValueError("F and B must be DataFrames") assets = X.columns.tolist() if B is not None: B = np.array(B, ndmin=2) if const == True: alpha = B[:, :1] B = B[:, 1:] mu_f = np.array(mean_vector(F, method=method_mu, **kwargs), ndmin=2) mu_f = (mu_f - rf).T tau = 1 / X.shape[0] S_f = np.array(covar_matrix(F, method=method_cov, **kwargs), ndmin=2) S = B @ S_f @ B.T if diag == True: D = X.to_numpy() - F @ B.T D = np.diag(D.var()) S = S + D Omega_f = np.array(np.diag(np.diag(P_f @ (tau * S_f) @ P_f.T)), ndmin=2) S_hat = inv(inv(S_f) + P_f.T @ inv(Omega_f) @ P_f) Pi_hat = S_hat @ (inv(S_f) @ mu_f + P_f.T @ inv(Omega_f) @ Q_f) S_blb = inv(inv(S) - inv(S) @ B @ inv(inv(S_hat) + B.T @ inv(S) @ B) @ B.T @ inv(S)) Pi_blb = ( S_blb @ inv(S) @ B @ inv(inv(S_hat) + B.T @ inv(S) @ B) @ inv(S_hat) @ Pi_hat ) mu = Pi_blb + rf if const == True: mu = mu + alpha mu = mu.T cov = S_blb w = inv(delta * cov) @ mu.T mu = pd.DataFrame(mu, columns=assets) cov = pd.DataFrame(cov, index=assets, columns=assets) w = pd.DataFrame(w, index=assets) return mu, cov, w
[文档] def bootstrapping(X, kind="stationary", q=0.05, n_sim=3000, window=3, seed=0): r""" Estimates the uncertainty sets of mean and covariance matrix through the selected bootstrapping method. Parameters ---------- X : DataFrame of shape (n_samples, n_features) Features matrix, where n_samples is the number of samples and n_features is the number of features. kind : str The bootstrapping method. The default value is 'stationary'. Possible values are: - 'stationary': stationary bootstrapping method, see `StationaryBootstrap <https://bashtage.github.io/arch/bootstrap/generated/arch.bootstrap.StationaryBootstrap.html#arch.bootstrap.StationaryBootstrap>`_ for more details. - 'circular': circular bootstrapping method, see `CircularBlockBootstrap <https://bashtage.github.io/arch/bootstrap/generated/arch.bootstrap.CircularBlockBootstrap.html#arch.bootstrap.CircularBlockBootstrap>`_ for more details. - 'moving': moving bootstrapping method, see `MovingBlockBootstrap <https://bashtage.github.io/arch/bootstrap/generated/arch.bootstrap.MovingBlockBootstrap.html#arch.bootstrap.MovingBlockBootstrap>`_ for more details. q : scalar Significance level of the selected bootstrapping method. The default is 0.05. n_sim : scalar Number of simulations of the bootstrapping method. The default is 3000. window: Block size of the bootstrapping method. Must be greather than 1 and lower than the n_samples - n_features + 1 The default is 3. seed: Seed used to generate random numbers for bootstrapping method. The default is 0. Returns ------- mu_l : DataFrame The q/2 percentile of mean vector obtained through the selected bootstrapping method. mu_u : DataFrame The 1-q/2 percentile of mean vector obtained through the selected bootstrapping method. cov_l : DataFrame The q/2 percentile of covariance matrix obtained through the selected bootstrapping method. cov_u : DataFrame The 1-q/2 percentile of covariance matrix obtained through the selected bootstrapping method. cov_mu : DataFrame The covariance matrix of estimation errors of mean vector obtained through the selected bootstrapping method. We take the diagonal of this matrix following :cite:`b-fabozzi2007robust`. Raises ------ ValueError When the value cannot be calculated. """ if not isinstance(X, pd.DataFrame): raise ValueError("X must be a DataFrame") if window >= X.shape[0] - window + 1: raise ValueError("block must be lower than n_samples - window + 1") elif window <= 1: raise ValueError("block must be greather than 1") cols = X.columns.tolist() cols_2 = [i + "-" + j for i in cols for j in cols] m = len(cols) mus = np.zeros((n_sim, 1, m)) covs = np.zeros((n_sim, m, m)) if kind == "stationary": gen = bs.StationaryBootstrap(window, X, seed=seed) elif kind == "circular": gen = bs.CircularBlockBootstrap(window, X, seed=seed) elif kind == "moving": gen = bs.MovingBlockBootstrap(window, X, seed=seed) else: raise ValueError("kind only can be 'stationary', 'circular' or 'moving'") i = 0 for data in gen.bootstrap(n_sim): A = data[0][0] mus[i] = A.mean().to_numpy().reshape(1, m) covs[i] = A.cov().to_numpy() i += 1 mu_l = np.percentile(mus, q / 2 * 100, axis=0, keepdims=True).reshape(1, m) mu_u = np.percentile(mus, 100 - q / 2 * 100, axis=0, keepdims=True).reshape(1, m) cov_l = np.percentile(covs, q / 2 * 100, axis=0, keepdims=True).reshape(m, m) cov_u = np.percentile(covs, 100 - q / 2 * 100, axis=0, keepdims=True).reshape(m, m) mu_l = pd.DataFrame(mu_l, index=[0], columns=cols) mu_u = pd.DataFrame(mu_u, index=[0], columns=cols) cov_l = pd.DataFrame(cov_l, index=cols, columns=cols) cov_u = pd.DataFrame(cov_u, index=cols, columns=cols) cov_mu = mus.reshape(n_sim, m) - X.mean().to_numpy().reshape(1, m) cov_mu = np.cov(cov_mu.T) cov_mu = np.diag(np.diag(cov_mu)) cov_mu = pd.DataFrame(cov_mu, index=cols, columns=cols) cov_sigma = covs - X.cov().to_numpy() cov_sigma = cov_sigma.reshape((n_sim, m * m), order="F") cov_sigma = np.cov(cov_sigma.T) cov_sigma = np.diag(np.diag(cov_sigma)) cov_sigma = pd.DataFrame(cov_sigma, index=cols_2, columns=cols_2) if af.is_pos_def(cov_l) == False: cov_l = af.cov_fix(cov_l, method="clipped", threshold=1e-3) if af.is_pos_def(cov_u) == False: cov_u = af.cov_fix(cov_u, method="clipped", threshold=1e-3) return mu_l, mu_u, cov_l, cov_u, cov_mu, cov_sigma