K最近邻算法

使用K最近邻算法将数据点分类到一个带有标签的数据集中。

  • 使用Array.prototype.map()data映射为对象。每个对象包含元素与point之间的欧几里德距离,使用Math.hypot()Object.keys()和它的label进行计算。
  • 使用Array.prototype.sort()Array.prototype.slice()获取pointk个最近邻。
  • 使用Array.prototype.reduce()结合Object.keys()Array.prototype.indexOf()来找出其中最频繁的label
const kNearestNeighbors = (data, labels, point, k = 3) => {
  const kNearest = data
    .map((el, i) => ({
      dist: Math.hypot(...Object.keys(el).map(key => point[key] - el[key])),
      label: labels[i]
    }))
    .sort((a, b) => a.dist - b.dist)
    .slice(0, k);

  return kNearest.reduce(
    (acc, { label }, i) => {
      acc.classCounts[label] =
        Object.keys(acc.classCounts).indexOf(label) !== -1
          ? acc.classCounts[label] + 1
          : 1;
      if (acc.classCounts[label] > acc.topClassCount) {
        acc.topClassCount = acc.classCounts[label];
        acc.topClass = label;
      }
      return acc;
    },
    {
      classCounts: {},
      topClass: kNearest[0].label,
      topClassCount: 0
    }
  ).topClass;
};

const data = [[0, 0], [0, 1], [1, 3], [2, 0]];
const labels = [0, 1, 1, 0];

kNearestNeighbors(data, labels, [1, 2], 2); // 1
kNearestNeighbors(data, labels, [1, 0], 2); // 0