K-means聚类
使用k-means聚类算法将给定的数据分成k
个簇。
- 使用
Array.from()
和Array.prototype.slice()
来初始化适当的变量,包括簇的centroids
、distances
和classes
。 - 使用
while
循环来重复分配和更新步骤,只要在上一次迭代中有变化,即itr
为真。 - 使用
Math.hypot()
、Object.keys()
和Array.prototype.map()
来计算每个数据点与质心之间的欧氏距离。 - 使用
Array.prototype.indexOf()
和Math.min()
来找到最近的质心。 - 使用
Array.from()
和Array.prototype.reduce()
,以及parseFloat()
和Number.prototype.toFixed()
来计算新的质心。
const kMeans = (data, k = 1) => {
const centroids = data.slice(0, k);
const distances = Array.from({ length: data.length }, () =>
Array.from({ length: k }, () => 0)
);
const classes = Array.from({ length: data.length }, () => -1);
let itr = true;
while (itr) {
itr = false;
for (let d in data) {
for (let c = 0; c < k; c++) {
distances[d][c] = Math.hypot(
...Object.keys(data[0]).map(key => data[d][key] - centroids[c][key])
);
}
const m = distances[d].indexOf(Math.min(...distances[d]));
if (classes[d] !== m) itr = true;
classes[d] = m;
}
for (let c = 0; c < k; c++) {
centroids[c] = Array.from({ length: data[0].length }, () => 0);
const size = data.reduce((acc, _, d) => {
if (classes[d] === c) {
acc++;
for (let i in data[0]) centroids[c][i] += data[d][i];
}
return acc;
}, 0);
for (let i in data[0]) {
centroids[c][i] = parseFloat(Number(centroids[c][i] / size).toFixed(2));
}
}
}
return classes;
};
kMeans([[0, 0], [0, 1], [1, 3], [2, 0]], 2); // [0, 1, 1, 0]